Installation
- Add InsForge dependencies to your project
- Maven Central
- GitHub Packages
build.gradle.kts:
Copy
repositories {
mavenLocal() // For local development
mavenCentral()
}
dependencies {
implementation("dev.insforge:insforge-kotlin:0.1.5")
}
First, create a GitHub Personal Access Token:
- Go to GitHub → Settings → Developer settings → Personal access tokens → Tokens (classic)
- Select permission:
read:packages
Option A: Environment Variables
Option A: Environment Variables
settings.gradle.kts (or build.gradle.kts):build.gradle.kts:Set environment variables before building:
Copy
repositories {
mavenCentral()
maven {
url = uri("https://maven.pkg.github.com/InsForge/insforge-kotlin")
credentials {
username = System.getenv("GITHUB_USER") ?: ""
password = System.getenv("GITHUB_TOKEN") ?: ""
}
}
}
Copy
dependencies {
implementation("dev.insforge:insforge-kotlin:0.1.3")
}
Copy
export GITHUB_USER="your-github-username"
export GITHUB_TOKEN="your-personal-access-token"
Option B: gradle.properties (Local Development)
Option B: gradle.properties (Local Development)
Add credentials to your global Gradle properties file:~/.gradle/gradle.properties:settings.gradle.kts:build.gradle.kts:
Copy
gpr.user=your-github-username
gpr.token=ghp_xxxxxxxxxxxx
Copy
repositories {
mavenCentral()
maven {
url = uri("https://maven.pkg.github.com/InsForge/insforge-kotlin")
credentials {
username = providers.gradleProperty("gpr.user").orNull ?: ""
password = providers.gradleProperty("gpr.token").orNull ?: ""
}
}
}
Copy
dependencies {
implementation("dev.insforge:insforge-kotlin:0.1.1")
}
The
~/.gradle/gradle.properties file is stored outside your project, so credentials won’t be accidentally committed to version control.- Initialize InsForge SDK
Copy
import dev.insforge.createInsforgeClient
import dev.insforge.auth.Auth
import dev.insforge.database.Database
import dev.insforge.storage.Storage
import dev.insforge.functions.Functions
import dev.insforge.realtime.Realtime
import dev.insforge.ai.AI
val client = createInsforgeClient(
baseUrl = "https://your-app.insforge.app",
anonKey = "your-api-key"
) {
install(Auth)
install(Database)
install(Storage)
install(Functions)
install(Realtime) {
autoReconnect = true
reconnectDelay = 5000
}
install(AI)
}
- Enable Logging (Optional)
Copy
import dev.insforge.InsforgeLogLevel
val client = createInsforgeClient(
baseUrl = "https://your-app.insforge.app",
anonKey = "your-api-key"
) {
// DEBUG: logs request method/URL and response status
// VERBOSE: logs full headers and request/response bodies
logLevel = InsforgeLogLevel.DEBUG
install(Auth)
install(Database)
// ... other modules
}
| Log Level | Description |
|---|---|
NONE | No logging (default, recommended for production) |
ERROR | Only errors |
WARN | Warnings and errors |
INFO | Informational messages |
DEBUG | Debug info (request method, URL, response status) |
VERBOSE | Full details (headers, request/response bodies) |
Use
NONE or ERROR in production to avoid exposing sensitive data in logs.Android Initialization
- Initialize InsForge SDK (With Local Storage and Browser Launcher for OAuth)
Copy
import android.content.Context
import android.content.Intent
import android.net.Uri
import dev.insforge.createInsforgeClient
import dev.insforge.ai.AI
import dev.insforge.auth.Auth
import dev.insforge.database.Database
import dev.insforge.functions.Functions
import dev.insforge.realtime.Realtime
import dev.insforge.storage.Storage
import dev.insforge.auth.BrowserLauncher
import dev.insforge.auth.SessionStorage
class InsforgeManager(private val context: Context) {
val client = createInsforgeClient(
baseUrl = "https://your-app.insforge.app",
anonKey = "your-anon-key"
) {
install(Auth) {
// 1. config BrowserLauncher (for OAuth)
browserLauncher = BrowserLauncher { url ->
val intent = Intent(Intent.ACTION_VIEW, Uri.parse(url))
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
context.startActivity(intent)
}
// 2. enable session persistence
persistSession = true
// 3. config SessionStorage (use SharedPreferences)
sessionStorage = object : SessionStorage {
private val prefs = context.getSharedPreferences(
"insforge_auth",
Context.MODE_PRIVATE
)
override suspend fun save(key: String, value: String) {
prefs.edit().putString(key, value).apply()
}
override suspend fun get(key: String): String? {
return prefs.getString(key, null)
}
override suspend fun remove(key: String) {
prefs.edit().remove(key).apply()
}
}
}
// Install Database module
install(Database)
// Install Realtime module for real-time subscriptions
install(Realtime) {
debug = true
}
// Install other modules
install(Storage)
install(Functions)
install(AI)
}
}
- Use Jetpack DataStore for Session Storage (Optional)
Copy
import androidx.datastore.core.DataStore
import androidx.datastore.preferences.core.Preferences
import androidx.datastore.preferences.core.edit
import androidx.datastore.preferences.core.stringPreferencesKey
import androidx.datastore.preferences.preferencesDataStore
import kotlinx.coroutines.flow.first
import kotlinx.coroutines.flow.map
val Context.authDataStore: DataStore<Preferences> by preferencesDataStore(name = "insforge_auth")
class DataStoreSessionStorage(private val context: Context) : SessionStorage {
override suspend fun save(key: String, value: String) {
context.authDataStore.edit { prefs ->
prefs[stringPreferencesKey(key)] = value
}
}
override suspend fun get(key: String): String? {
return context.authDataStore.data.map { prefs ->
prefs[stringPreferencesKey(key)]
}.first()
}
override suspend fun remove(key: String) {
context.authDataStore.edit { prefs ->
prefs.remove(stringPreferencesKey(key))
}
}
}
// Then use it in your InsForge client
install(Auth) {
browserLauncher = ...
persistSession = true
sessionStorage = DataStoreSessionStorage(context)
}
listModels()
List all available AI models.Example
Copy
val models = client.ai.listModels()
models.forEach { model ->
println("${model.provider}/${model.modelId}")
println(" Input: ${model.inputModality}, Output: ${model.outputModality}")
println(" Max tokens: ${model.maxTokens}")
}
chatCompletion()
Create an AI chat completion.Parameters
model(String) - Model identifier (e.g., “anthropic/claude-3.5-haiku”)messages(List<ChatMessage>) - Conversation messagestemperature(Double?, optional) - Sampling temperature (0.0-2.0)maxTokens(Int?, optional) - Maximum tokens to generatesystemPrompt(String?, optional) - System promptwebSearch(WebSearchPlugin?, optional) - Enable web search capabilitiesfileParser(FileParserPlugin?, optional) - Enable file/PDF parsingthinking(Boolean?, optional) - Enable extended reasoning mode
Returns
Copy
ChatCompletionResponse
Example (Basic)
Copy
val response = client.ai.chatCompletion(
model = "anthropic/claude-3.5-haiku",
messages = listOf(
ChatMessage(role = "user", content = "What is the capital of France?")
)
)
println(response.text) // Direct access to text content
println("Tokens used: ${response.metadata.usage.totalTokens}")
// Access annotations if available
response.annotations?.forEach { annotation ->
println("Citation: ${annotation.urlCitation.url}")
}
Example (With Parameters)
Copy
val response = client.ai.chatCompletion(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "system", content = "You are a helpful assistant."),
ChatMessage(role = "user", content = "Explain quantum computing in simple terms")
),
temperature = 0.7,
maxTokens = 1000
)
println(response.text)
Example (Multi-turn Conversation)
Copy
val conversationHistory = mutableListOf<ChatMessage>()
// First message
conversationHistory.add(ChatMessage(role = "user", content = "What is Kotlin?"))
val response1 = client.ai.chatCompletion(
model = "anthropic/claude-3.5-haiku",
messages = conversationHistory
)
conversationHistory.add(ChatMessage(role = "assistant", content = response1.text))
// Follow-up
conversationHistory.add(ChatMessage(role = "user", content = "What are its main features?"))
val response2 = client.ai.chatCompletion(
model = "anthropic/claude-3.5-haiku",
messages = conversationHistory
)
println(response2.text)
Example (With Web Search)
Copy
val response = client.ai.chatCompletion(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "user", content = "What are the latest news about AI?")
),
webSearch = WebSearchPlugin(
enabled = true,
maxResults = 5,
engine = WebSearchEngine.NATIVE
)
)
println(response.text)
// Access URL citations from search results
response.annotations?.forEach { annotation ->
println("Source: ${annotation.urlCitation.title} - ${annotation.urlCitation.url}")
}
Example (With PDF Parsing)
Copy
val response = client.ai.chatCompletion(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "user", content = "Summarize the content of this PDF")
),
fileParser = FileParserPlugin(
enabled = true,
pdf = PdfParserConfig(engine = PdfEngine.MISTRAL_OCR)
)
)
println(response.text)
Example (With Extended Reasoning)
Copy
val response = client.ai.chatCompletion(
model = "anthropic/claude-3.5-sonnet",
messages = listOf(
ChatMessage(role = "user", content = "Solve this complex math problem step by step...")
),
thinking = true
)
println(response.text)
Example (Combined Features)
Copy
val response = client.ai.chatCompletion(
model = "openai/gpt-4",
messages = messages,
webSearch = WebSearchPlugin(enabled = true, maxResults = 3),
fileParser = FileParserPlugin(enabled = true),
thinking = true
)
println(response.text)
chatCompletionWithWebSearch()
Convenience method for chat completion with web search enabled.Parameters
model(String) - Model identifiermessages(List<ChatMessage>) - Conversation messagesmaxResults(Int?, optional) - Maximum search results (default: 5)engine(WebSearchEngine?, optional) - Search engine to usetemperature(Double?, optional) - Sampling temperaturemaxTokens(Int?, optional) - Maximum tokens to generate
Example
Copy
val response = client.ai.chatCompletionWithWebSearch(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "user", content = "What are today's top news headlines?")
),
maxResults = 5
)
println(response.text)
// Access citations
response.annotations?.forEach { annotation ->
println("- ${annotation.urlCitation.title}: ${annotation.urlCitation.url}")
}
chatCompletionWithThinking()
Convenience method for chat completion with extended reasoning mode enabled.Parameters
model(String) - Model identifiermessages(List<ChatMessage>) - Conversation messagestemperature(Double?, optional) - Sampling temperaturemaxTokens(Int?, optional) - Maximum tokens to generate
Example
Copy
val response = client.ai.chatCompletionWithThinking(
model = "anthropic/claude-3.5-sonnet",
messages = listOf(
ChatMessage(role = "user", content = "Analyze this complex problem and provide a detailed solution...")
)
)
println(response.text)
chatCompletionStream()
Create a streaming chat completion. ReturnsFlow<String> that emits content chunks directly.
Parameters
model(String) - Model identifiermessages(List<ChatMessage>) - Conversation messagestemperature(Double?, optional) - Sampling temperaturemaxTokens(Int?, optional) - Maximum tokens to generatewebSearch(WebSearchPlugin?, optional) - Enable web search capabilitiesfileParser(FileParserPlugin?, optional) - Enable file/PDF parsingthinking(Boolean?, optional) - Enable extended reasoning mode
Example
Copy
client.ai.chatCompletionStream(
model = "anthropic/claude-3.5-haiku",
messages = listOf(
ChatMessage(role = "user", content = "Tell me a story")
)
).collect { content ->
print(content) // Content string directly
}
Example (With StringBuilder)
Copy
val fullResponse = StringBuilder()
client.ai.chatCompletionStream(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "user", content = "Explain quantum computing")
),
temperature = 0.7
).collect { content ->
fullResponse.append(content)
// Update UI with each chunk
updateUI(fullResponse.toString())
}
println("Complete response: $fullResponse")
Example (Streaming with Web Search)
Copy
client.ai.chatCompletionStream(
model = "openai/gpt-4",
messages = listOf(
ChatMessage(role = "user", content = "What's happening in tech news today?")
),
webSearch = WebSearchPlugin(enabled = true, maxResults = 3)
).collect { content ->
print(content)
}
generateEmbeddings()
Generate vector embeddings for text input using AI models.Parameters
model(String) - Embedding model identifier (e.g., “google/gemini-embedding-001”)input(String?, optional) - Single text input to embedinputs(List<String>?, optional) - Multiple text inputs to embedencodingFormat(EmbeddingEncodingFormat?, optional) - Output format (FLOAT or BASE64)dimensions(Int?, optional) - Number of dimensions for the output embeddings
Returns
Copy
EmbeddingsResponse
Example (Single Text)
Copy
val response = client.ai.generateEmbeddings(
model = "google/gemini-embedding-001",
input = "Hello world"
)
println("Generated ${response.data.size} embedding(s)")
println("Dimensions: ${response.data.first().embedding.size}")
println("Model: ${response.metadata?.model}")
Example (Multiple Texts)
Copy
val response = client.ai.generateEmbeddings(
model = "google/gemini-embedding-001",
inputs = listOf("Hello", "World", "How are you?")
)
response.data.forEachIndexed { index, embedding ->
println("Embedding $index: ${embedding.embedding.take(5)}...") // First 5 dimensions
}
Example (With Optional Parameters)
Copy
val response = client.ai.generateEmbeddings(
model = "google/gemini-embedding-001",
input = "Hello world",
encodingFormat = EmbeddingEncodingFormat.FLOAT,
dimensions = 512
)
println("Embedding dimensions: ${response.data.first().embedding.size}") // 512
Example (Semantic Search)
Copy
// Generate embeddings for documents
val documents = listOf(
"Kotlin is a modern programming language",
"Android development with Jetpack Compose",
"Machine learning with TensorFlow"
)
val docEmbeddings = client.ai.generateEmbeddings(
model = "google/gemini-embedding-001",
inputs = documents
)
// Generate embedding for query
val queryEmbedding = client.ai.generateEmbeddings(
model = "google/gemini-embedding-001",
input = "mobile app development"
)
// Calculate cosine similarity (simplified)
fun cosineSimilarity(a: List<Double>, b: List<Double>): Double {
val dotProduct = a.zip(b).sumOf { it.first * it.second }
val normA = sqrt(a.sumOf { it * it })
val normB = sqrt(b.sumOf { it * it })
return dotProduct / (normA * normB)
}
// Find most similar document
val queryVector = queryEmbedding.data.first().embedding
val similarities = docEmbeddings.data.mapIndexed { index, embedding ->
index to cosineSimilarity(queryVector, embedding.embedding)
}
val mostSimilar = similarities.maxByOrNull { it.second }
println("Most similar: ${documents[mostSimilar!!.first]}")
generateImage()
Generate images using AI models.Parameters
model(String) - Image generation model (e.g., “openai/dall-e-3”)prompt(String) - Image description
Returns
Copy
ImageGenerationResponse
Example
Copy
val response = client.ai.generateImage(
model = "google/gemini-2.5-flash-image-preview",
prompt = "A serene mountain landscape at sunset"
)
println("Generated ${response.count} image(s)")
response.images.forEach { image ->
val imageUrl = image.imageUrl.url
if (imageUrl.startsWith("data:image")) {
// Handle base64 encoded image
val base64Data = imageUrl.substringAfter("base64,")
val imageData = Base64.decode(base64Data, Base64.DEFAULT)
val bitmap = BitmapFactory.decodeByteArray(imageData, 0, imageData.size)
imageView.setImageBitmap(bitmap)
} else {
// Handle URL - load with Coil/Glide
// AsyncImage(model = imageUrl, ...)
}
}
Example (Save to Storage)
Copy
val response = client.ai.generateImage(
model = "openai/dall-e-3",
prompt = "A futuristic city skyline"
)
response.images.firstOrNull()?.let { image ->
val imageUrl = image.imageUrl.url
if (imageUrl.startsWith("data:image")) {
val base64Data = imageUrl.substringAfter("base64,")
val imageData = Base64.decode(base64Data, Base64.DEFAULT)
// Upload to storage
val uploadResult = client.storage
.from("ai-images")
.uploadWithAutoKey("generated.png", imageData) {
contentType = "image/png"
}
// Save reference to database
client.database
.from("generated_images")
.insertTyped(listOf(
GeneratedImageRecord(
prompt = "A futuristic city skyline",
imageUrl = uploadResult.url
)
))
.returning()
.execute<GeneratedImageRecord>()
Log.d("AI", "Image saved: ${uploadResult.url}")
}
}
Jetpack Compose Integration
Chat Screen
Copy
@Composable
fun ChatScreen() {
var messages by remember { mutableStateOf<List<ChatMessage>>(emptyList()) }
var inputText by remember { mutableStateOf("") }
var isLoading by remember { mutableStateOf(false) }
val scope = rememberCoroutineScope()
Column(modifier = Modifier.fillMaxSize()) {
LazyColumn(
modifier = Modifier
.weight(1f)
.padding(16.dp),
reverseLayout = true
) {
items(messages.reversed()) { message ->
ChatBubble(message = message)
}
}
Row(
modifier = Modifier
.fillMaxWidth()
.padding(16.dp)
) {
OutlinedTextField(
value = inputText,
onValueChange = { inputText = it },
modifier = Modifier.weight(1f),
placeholder = { Text("Message") }
)
Spacer(modifier = Modifier.width(8.dp))
IconButton(
onClick = {
if (inputText.isNotBlank() && !isLoading) {
val userMessage = ChatMessage(role = "user", content = inputText)
messages = messages + userMessage
val currentInput = inputText
inputText = ""
scope.launch {
isLoading = true
try {
val response = client.ai.chatCompletion(
model = "anthropic/claude-3.5-haiku",
messages = messages
)
messages = messages + ChatMessage(
role = "assistant",
content = response.text
)
} catch (e: Exception) {
Log.e("Chat", "Error: ${e.message}")
} finally {
isLoading = false
}
}
}
},
enabled = inputText.isNotBlank() && !isLoading
) {
Icon(Icons.Default.Send, "Send")
}
}
}
}
@Composable
fun ChatBubble(message: ChatMessage) {
val isUser = message.role == "user"
Row(
modifier = Modifier
.fillMaxWidth()
.padding(vertical = 4.dp),
horizontalArrangement = if (isUser) Arrangement.End else Arrangement.Start
) {
Card(
colors = CardDefaults.cardColors(
containerColor = if (isUser)
MaterialTheme.colorScheme.primary
else
MaterialTheme.colorScheme.surfaceVariant
)
) {
Text(
text = message.content,
modifier = Modifier.padding(12.dp),
color = if (isUser)
MaterialTheme.colorScheme.onPrimary
else
MaterialTheme.colorScheme.onSurfaceVariant
)
}
}
}
Streaming Chat
Copy
@Composable
fun StreamingChatScreen() {
var response by remember { mutableStateOf("") }
var isStreaming by remember { mutableStateOf(false) }
var prompt by remember { mutableStateOf("") }
val scope = rememberCoroutineScope()
Column(
modifier = Modifier
.fillMaxSize()
.padding(16.dp)
) {
OutlinedTextField(
value = prompt,
onValueChange = { prompt = it },
label = { Text("Your question") },
modifier = Modifier.fillMaxWidth()
)
Spacer(modifier = Modifier.height(16.dp))
Button(
onClick = {
scope.launch {
isStreaming = true
response = ""
try {
client.ai.chatCompletionStream(
model = "anthropic/claude-3.5-haiku",
messages = listOf(
ChatMessage(role = "user", content = prompt)
)
).collect { content ->
response += content
}
} catch (e: Exception) {
Log.e("Stream", "Error: ${e.message}")
} finally {
isStreaming = false
}
}
},
enabled = prompt.isNotBlank() && !isStreaming,
modifier = Modifier.fillMaxWidth()
) {
Text(if (isStreaming) "Streaming..." else "Ask AI")
}
Spacer(modifier = Modifier.height(16.dp))
Text(
text = response,
modifier = Modifier
.weight(1f)
.verticalScroll(rememberScrollState())
)
}
}
Image Generation Screen
Copy
@Composable
fun ImageGenerationScreen() {
var prompt by remember { mutableStateOf("") }
var generatedBitmap by remember { mutableStateOf<Bitmap?>(null) }
var isGenerating by remember { mutableStateOf(false) }
val scope = rememberCoroutineScope()
Column(
modifier = Modifier
.fillMaxSize()
.padding(16.dp),
horizontalAlignment = Alignment.CenterHorizontally
) {
OutlinedTextField(
value = prompt,
onValueChange = { prompt = it },
label = { Text("Describe your image...") },
modifier = Modifier.fillMaxWidth()
)
Spacer(modifier = Modifier.height(16.dp))
Button(
onClick = {
scope.launch {
isGenerating = true
try {
val response = client.ai.generateImage(
model = "google/gemini-2.5-flash-image-preview",
prompt = prompt
)
response.images.firstOrNull()?.let { image ->
val imageUrl = image.imageUrl.url
if (imageUrl.startsWith("data:image")) {
val base64Data = imageUrl.substringAfter("base64,")
val data = Base64.decode(base64Data, Base64.DEFAULT)
generatedBitmap = BitmapFactory.decodeByteArray(
data, 0, data.size
)
}
}
} catch (e: Exception) {
Log.e("ImageGen", "Failed: ${e.message}")
} finally {
isGenerating = false
}
}
},
enabled = prompt.isNotBlank() && !isGenerating,
modifier = Modifier.fillMaxWidth()
) {
Text(if (isGenerating) "Generating..." else "Generate Image")
}
Spacer(modifier = Modifier.height(16.dp))
if (isGenerating) {
CircularProgressIndicator()
}
generatedBitmap?.let { bitmap ->
Image(
bitmap = bitmap.asImageBitmap(),
contentDescription = "Generated image",
modifier = Modifier
.fillMaxWidth()
.height(300.dp)
)
}
}
}
Error Handling
Copy
import dev.insforge.exceptions.InsforgeHttpException
import dev.insforge.exceptions.InsforgeException
try {
val response = client.ai.chatCompletion(
model = "anthropic/claude-3.5-haiku",
messages = listOf(ChatMessage(role = "user", content = "Hello"))
)
println(response.text)
} catch (e: InsforgeHttpException) {
when (e.error) {
"MODEL_NOT_FOUND" -> println("Model not available")
"RATE_LIMIT_EXCEEDED" -> println("Rate limit exceeded, try again later")
"INVALID_REQUEST" -> println("Invalid request: ${e.message}")
else -> println("API Error: ${e.message}")
}
} catch (e: InsforgeException) {
println("SDK Error: ${e.message}")
}
Models Reference
Enums
Copy
// Search engine options for web search
enum class WebSearchEngine {
@SerialName("native") NATIVE,
@SerialName("exa") EXA
}
// PDF processing engine options
enum class PdfEngine {
@SerialName("pdf-text") PDF_TEXT,
@SerialName("mistral-ocr") MISTRAL_OCR,
@SerialName("native") NATIVE
}
Plugin Configuration
Copy
// Web search plugin configuration
@Serializable
data class WebSearchPlugin(
val enabled: Boolean = true,
@SerialName("max_results") val maxResults: Int? = null,
val engine: WebSearchEngine? = null
)
// PDF parser configuration
@Serializable
data class PdfParserConfig(
val engine: PdfEngine? = null
)
// File parser plugin configuration
@Serializable
data class FileParserPlugin(
val enabled: Boolean = true,
val pdf: PdfParserConfig? = null
)
ChatMessage
Copy
@Serializable
data class ChatMessage(
val role: String, // "user", "assistant", "system"
val content: String
)
ChatCompletionResponse
Copy
@Serializable
data class ChatCompletionResponse(
val success: Boolean,
val text: String,
val annotations: List<UrlCitationAnnotation>? = null,
val metadata: CompletionMetadata
)
@Serializable
data class CompletionMetadata(
val model: String,
val usage: TokenUsage
)
@Serializable
data class TokenUsage(
@SerialName("prompt_tokens") val promptTokens: Int,
@SerialName("completion_tokens") val completionTokens: Int,
@SerialName("total_tokens") val totalTokens: Int
)
Annotations
Copy
// URL citation information from web search results
@Serializable
data class UrlCitation(
val url: String,
val title: String? = null,
@SerialName("start_index") val startIndex: Int? = null,
@SerialName("end_index") val endIndex: Int? = null
)
// Annotation containing URL citation
@Serializable
data class UrlCitationAnnotation(
val type: String, // "url_citation"
@SerialName("url_citation") val urlCitation: UrlCitation
)
EmbeddingsResponse
Copy
// Encoding format options for embeddings
enum class EmbeddingEncodingFormat {
@SerialName("float") FLOAT,
@SerialName("base64") BASE64
}
@Serializable
data class EmbeddingsResponse(
val `object`: String, // "list"
val data: List\<EmbeddingObject\>,
val metadata: EmbeddingsMetadata? = null
)
@Serializable
data class EmbeddingObject(
val `object`: String, // "embedding"
val embedding: List\<Double\>, // or String for base64 format
val index: Int
)
@Serializable
data class EmbeddingsMetadata(
val model: String,
val usage: EmbeddingsUsage? = null
)
@Serializable
data class EmbeddingsUsage(
@SerialName("prompt_tokens") val promptTokens: Int? = null,
@SerialName("total_tokens") val totalTokens: Int? = null
)
ImageGenerationResponse
Copy
@Serializable
data class ImageGenerationResponse(
val model: String,
val images: List<GeneratedImage>,
val text: String? = null,
val count: Int,
val metadata: ImageMetadata,
val nextActions: String
)
@Serializable
data class GeneratedImage(
val type: String, // "image_url"
@SerialName("image_url") val imageUrl: ImageUrl
)
@Serializable
data class ImageUrl(
val url: String // URL or data:image/... base64
)
@Serializable
data class ImageMetadata(
val model: String,
val provider: String
)
AIModel
Copy
@Serializable
data class AIModel(
val id: String,
val provider: String,
val modelId: String,
val inputModality: String, // "text", "image", etc.
val outputModality: String,
val maxTokens: Int? = null
)